2010 A-level H2 Mathematics (9740) Paper 2 Question 2 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

(i)
Let P(n) be the statement: \sum_{r=1}^n r(r+2) = \frac{1}{6}n(n+1)(2n+7), n \in \mathbb{Z}^+

When n = 1, ~\text{LHS} = 1(3)=3, \text{~and~RHS} = \frac{1}{6}(2)(9) = 3 = \text{LHS}

\therefore, P(n) is true.

Assume that P(k) is true for some k \in \mathbb{Z}^+, i.e. \sum_{r=1}^k r(r+2) = \frac{1}{6}k(k+1)(2k+7)

Want to prove that P(k+1) is true, i.e. \sum_{r=1}^{k+1} r(r+2) = \frac{1}{6}(k+1)(k+2)(2k+9)

LHS

= \sum_{r=1}^{k+1} r(r+2)

= \sum_{r=1}^{k} r(r+2) + (k+1)(k+3)

= \frac{1}{6}k(k+1)(2k+7) + (k+1)(k+3)

= \frac{1}{6}(k+1)[k(2k+7)+6(k+3)]

= \frac{1}{6}(k+1)(2k^2+13k+18)

= \frac{1}{6}(k+1)(k+2)(2k+9)

= \text{RHS}

Since P(1) is true and P(k) \text{~is~true} \Rightarrow P(k+1) is true, hence by Mathematical Induction, P(n) is true for all n \in \mathbb{Z}^+

(ii)
(a)

\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}

\sum_{r=1}^n \frac{1}{r(r+2)}

= \sum_{r=1}^n \frac{1}{2r} - \frac{1}{2(r+2)}

= \frac{1}{2} - \frac{1}{2(3)}

+ \frac{1}{2(2)} - \frac{1}{2(4)}

+ \frac{1}{2(3)} - \frac{1}{2(5)}

+ \frac{1}{2(n-1)} - \frac{1}{2(n+1)}

+ \frac{1}{2n} - \frac{1}{2(n+2)}

= \frac{1}{2} + \frac{1}{2(2)} - \frac{1}{2(n+1)} - \frac{1}{2(n+2)}

= \frac{3}{4} - \frac{1}{2(n+1)} - \frac{1}{2(n+2)}

(b)
As n \rightarrow \infty, \frac{1}{2(n+1)} \rightarrow 0, \frac{1}{2(n+2)} \rightarrow 0

Hence, \sum_{r=1}^{\infty} \frac{1}{r(r+2)} is a convergent series, and the value of the sum to infinity is \frac{3}{4}

Leave a Comment

nineteen + 4 =

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search