2016 A-level H1 Mathematics (8864) Paper 1 Suggested Solutions

All solutions here are SUGGESTED. KS will hold no liability for any errors. Comments are entirely personal opinions.

As these workings and answers are rushed out asap, please pardon me for my mistakes and let me know if there is any typo. Many thanks.
I’ll try my best to attend to the questions as there is H2 Math Paper 2 coming up.

Question 1
(i)
\frac{d}{dx} [2 \text{ln}(3x^2 +4)]

= \frac{12x}{3x^2+4}

(ii)
\frac{d}{dx} [\frac{1}{2(1-3x)^2}]

= \frac{6}{2(1-3x)^3}

= \frac{3}{(1-3x)^3}


Question 2

2e^{2x} \ge 9 - 3e^x

2u^2 + 3u - 9 \ge 0

(2u-3)(u+3) \ge 0

\Rightarrow u \le -3 \text{~or~} u \ge \frac{3}{2}

e^x \le -3 (rejected since e^x > 0) or e^x \ge \frac{3}{2}

\therefore x \ge \text{ln} \frac{3}{2}


Question 3
(i)

Graph for 3i
Graph for 3i

(ii)
Using GC, required answer = -1.606531 \approx -1.61 (3SF)

(iii)
When x = 0.5, y = 0.35653066

y -  0.35653066 = \frac{-1}{-1.606531}(x-0.5)

y = 0.622459 x +0.04530106

y = 0.622 x + 0.0453 (3SF)

(iv)

\int_0^k e^{-x} -x^2 dx

= -e^{-x} - \frac{x^3}{3} \bigl|_0^k

= -e^{-k} - \frac{k^3}{3} + 1


Question 4
(i)
y = 1 + 6x - 3x^2 -4x^3

\frac{dy}{dx} = 6 - 6x - 12x^2

Let \frac{dy}{dx} = 0

6 - 6x - 12x^2 = 0

1 - x - 2x^2 = 0

2x^2 + x - 1 = 0

x = -1 or \frac{1}{2}

When x =-1, y = -4

When x = \frac{1}{2}, y = 2.75

Coordinates = (-1, -4) \text{~or~} (0.5, 2.75)

(ii)
\frac{dy}{dx} = 6 - 6x - 12x^2

\frac{d^2y}{dx^2} = - 6 - 24x

When x = -1, \frac{d^2y}{dx^2} = 18 > 0. So (-1, -4) is a minimum point.

When x = 0.5, \frac{d^2y}{dx^2} = -18 \textless 0. So (0.5, 2.75) is a maximum point.

(iii)

Graph for 4iii
Graph for 4iii

x-intercept = (-1.59, 0) \text{~and~} (1, 0) \text{~and~} (-0.157, 0)

(iv)
Using GC, \int_0.5^1 y dx = 0.9375


Question 5
(i)
Area of ABEDFCA = \frac{1}{2}(2x)(2x)\text{sin}60^{\circ} -  \frac{1}{2}(y)(y)\text{sin}60^{\circ}

2\sqrt{3} = \sqrt{3}x^2 - \frac{\sqrt{3}}{4}y^2

2 = x^2 - \frac{y^2}{4}

4x^2 - y^2 =8

(ii)

Perimeter = 10

4x+2y + (2x-y) = 10

6x + y = 10

y = 10 - 6x

4x^2 - (10-6x)^2 = 8

4x^2 - 100 +120x -36x^2 = 8

32x^2 -120x+108=0

x=2.25 \text{~or~} 1.5

When x=2.25, y = -3.5 (rejected since y >0)

When x=1.5, y = 1


Question 6
(i)
The store manager has to survey \frac{1260}{2400} \times 80 = 42 male students and \frac{1140}{2400} \times 80 = 38 female students in the college. He will do random sampling to obtain the required sample.

(ii)
Stratified sampling will give a more representative results of the students expenditure on music annually, compared to simple random sampling.

(iii)
Unbiased estimate of population mean, \bar{x} = \frac{\sum x}{n} = \frac{312}{80} = 3.9

Unbiased estimate of population variance, s^2 = \frac{1}{79}[1328 - \frac{312^2}{80}] = 1.40759 \approx 1.41


Question 7
(i)
[Venn diagram to be inserted]

(ii)
(a)
\text{P}(A \cup B) = \text{P}(A) + \text{P}(B) - \text{P}(A \cap B) = 0.8
(b)
\text{P}(A \cup B) -  \text{P}(A \cap B) = 0.75

(iii)
\text{P}(A | B')

= \frac{\text{P}(A \cap B')}{\text{P}(B')}

= \frac{\text{P}(A) - \text{P}(A \cap B)}{1 - \text{P}(B)}

= \frac{0.6 - 0.05}{1-0.25}

= \frac{11}{15}


Question 8
(i)
Required Probability = \frac{1}{2} \times \frac{3}{10} \times \frac{2}{9} = \frac{1}{30}

(ii)
Find the probability that we get same color. then consider the complement.

Required Probability = 1 - \frac{1}{30} - \frac{1}{2} \times \frac{5}{10} \times \frac{4}{9} - \frac{1}{2} \times \frac{2}{10} \times \frac{1}{9} - \frac{1}{2} \times \frac{4}{6} \times \frac{3}{5} - \frac{1}{2} \times \frac{2}{6} \times \frac{1}{5} = \frac{11}{18}

(iii)
\text{P}(\text{Both~balls~are~red} | \text{same~color})

= \frac{\text{P}(\text{Both~balls~are~red~and~same~color})}{\text{P}(\text{same~color})}

= \frac{\text{P}(\text{Both~balls~are~red})}{\text{P}(\text{same~color})}

= \frac{1/30}{7/18}

= \frac{3}{35}


Question 9
(i)
Let X denote the number of batteries in a pack of 8 that has a life time of less than two years.

X \sim B(8, 0.6)
(a)
Required Probability =\text{P}(X=8) = 0.01679616 \approx 0.0168

(b)
Required Probability =\text{P}(X \ge 4) = 1 - \text{P}(X \le 3) = 0.8263296 \approx 0.826

(ii)
Let Y denote the number of packs of batteries, out of 4 packs, that has at least half of the batteries having a lifetime of less than two years.

Y \sim B(4, 0.8263296)

Required Probability =\text{P}(Y \le 2) = 0.1417924285 \approx 0.142

(iii)
Let W denote the number of batteries out of 80 that has a life time of less than two years.

W \sim B(80, 0.6)

Since n is large, np = 48 > 5, n(1-p)=32 >5

W \sim N(48, 19.2) approximately

Required Probability

= \text{P}(w \ge 40)

= \text{P}(w > 39.5) by continuity correction

= 0.9738011524
\approx 0.974


Question 10
(i)
Let X be the top of speed of cheetahs.
Let \mu be the population mean top speed of cheetahs.

H_0: \mu = 95

H_1: \mu \neq 95

Under H_0, \bar{X} \sim N(95, \frac{4.1^2}{40})

Test Statistic, Z = \frac{\bar{X}-\mu}{\frac{4.1}{\sqrt{40}}} \sim N(0,1)

Using GC, p=0.0449258443 \textless 0.05 \Rightarrow H_0 is rejected.

(ii)
H_0: \mu = 95

H_1: \mu > 95

For H_0 to be not rejected,

\frac{\bar{x}-95}{\frac{4.1}{\sqrt{40}}} \textless 1.644853626

\bar{x} \textless 96.06 \approx 96.0 (round down to satisfy the inequality)

\therefore \{ \bar{x} \in \mathbb{R}^+: \bar{x} \textless 96.0 \}


Question 11
(i)
[Sketch to be inserted]

(ii)
Using GC, r = 0.9030227 \approx 0.903 (3SF)

(iii)
Using GC, y = 0.2936681223 x - 1.88739083

y = 0.294 x - 1.89 (3SF)

(iv)
When x = 16.9, y = 3.0756 \approx 3.08(3SF)

Time taken = 3.08 minutes

Estimate is reliable since x = 16.9 is within the given data range and |r|=0.903 is close to 1.

(v)
Using GC, r = 0.5682278 \approx 0.568 (3SF)

(vi)
The answers in (ii) is more likely to represent since |r|=0.903 is close to 1. This shows a strong positive linear correlation between x and y.


Question 12
Let X, Y denotes the mass of the individual biscuits and its empty boxes respectively.

X \sim N(20, 1.1^2)

Y \sim N(5, 0.8^2)

(i)
\text{P}(X \textless 19) = 0.181651 \approx 0.182

(ii)
X_1 + ... + X_12 + Y \sim N(245, 15.16)

\text{P}(X_1 + ... + X_12 + Y > 248) = 0.2205021 \approx 0.221

(iii)
0.6X \sim N(12, 0.66^2)

0.2Y \sim N(1, 0.16^2)

Let A=0.6X and B = 0.2Y

A_1+...+A_12+B \sim N(145, 5.2528)

\text{P}(142 \textless A_1+...+A_12+B \textless 149) = 0.864257 \approx 0.864


51 thoughts on “2016 A-level H1 Mathematics (8864) Paper 1 Suggested Solutions”

  1. Hello! I’m not sure whether it’s something wrong with my phone or some other problem like that but I can’t see any of the answers!

      1. This is an odd question but if you leave the answer as mean=$3.9, and variance=$1.41, will I not get the answer mark because of the units? Or is it alright?

  2. Hi, I think there is an error in 8(iii), how can it be that your answer in 8(ii) is 11/18 (different balls) and yet you use 11/18 for same balls? I think it should be 1/30 divided by 7/18, giving you an answer of 3/35. Thanks for uploading the answers, greatly appreciate it πŸ™‚

    1. yea, my bad. didnt read the question. sorry, i’ll typing the h1 on the phone while having h2 math classes now. cos i only planned on doing h1 at 10pm lol
      Thanks for pointing it out!

    1. oh right. didnt read the question. sorry, i’ll typing the h1 on the phone while having h2 math classes now. cos i only planned on doing h1 at 10pm lol.
      Thanks for pointing it out!

  3. Just a minor mistake for 11(v) when you rounded it off to 3 s.f the decimal point went missing. Omg I just realised my careless mistakes and how I didn’t x 1/2 for the probability qn I am feeling q depressed now LOL ohwell thanks for uploading the answers for all of us! πŸ™‚ gladly appreciate it πŸ™‚

    1. You have to pick the box first that’s why x 1/2 I guess! I didn’t do that too bc I was afraid it’ll lead to “double counting” πŸ™

  4. It is a question that confused us with words. The last part stated ” he finds that the mean top speed….is NOT greater than 95″, which have to reject the Ho that is greater than 95.

  5. Hello, I think for Q10ii, you should test for u>95 since Probability of X being more than 95 is not achieved (insufficient evidence to prove H1 is true) and hence H0 is not rejected, and is more than 0.05 (critical region)

    P(X > x) > 0.05, hence find X values to satisfy this using sample mean distribution.

    No? πŸ™‚

    1. I took “he finds that mean top speed is not greater than 95…” to refer to the rejection of H1 and to work from this rejection

      1. *sry last comment*
        You rejected H0: u = 95 to derive the range of sample mean values.
        But question only stated not more than 95, so there is a possibility of u=95 and u95 and thus not reject H0: u=95 to derive our sample values from there πŸ™‚

  6. For 10 ii, can my alternate hypothesis more than 95? After which I show that Ho is valid, hence mean is not greater than 95.

    And questiom 11vi, isnt the p value in part v more accurate? Because the increase in sample size will provide a more accurate representation of the entire population?

Leave a Reply