### Thoughts on the H2 Mathematics (9758) Papers 2017

Solutions can be found here.

Personal Thoughts: The paper isn’t tedious. Students can do them so long as they know their stuffs. There are several generalising of questions, like question 6 of paper 1. We also saw how conditional probability was actually tested subtly, this tests students’ abilities to reason with guidance (not sure if after this first trial year, will they still guide the students.) Application questions were not tough and well guided. Students can solve it easily if they read it well. Statistics was well crafted and neat.

To be blunt, I’ll give credit to the 9740 H2 Mathematics paper that run concurrently, since it is too tough to set two sets of papers. Its easy to acknowledge that the 9740 (2016) paper was way harder than 9740 (2017). Next year won’t be the same.

Advice: Students should be careful when you revise, make sure you learn, and not do. Understand what you’re doing. The 2017 paper was an inquisitive paper, examiners were watching closely if you pay attention to details, and know your definitions well.

I’ll do an analysis for the paper, you can click on the individual question and read. For students that took the paper, I hope it doesn’t demoralise you.

Paper 1

Paper 2

### A-level H2 Mathematics (9758) Suggested Solutions (2017)

Here is the suggested solutions for H2 Mathematics (9758). They are all typed in LaTeX, so if it does not render, please leave a comment and let me know. Thank you.

The suggested solutions for H2 Mathematics (9740) is here.

Students of mine should obtain the modified A’levels Paper, and the solutions to the additional questions can be found here.

Year 2017

MF26

### 2017 A-level H1 Mathematics (8865) Paper 1 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

Numerical Answers (click the questions for workings/explanation)

Question 1:
Question 2:
Question 3:
Question 4:
Question 5:
Question 6: $\mu = 1.69, \sigma^2 = 0.0121$
Question 7: $0.254; 0.194; 0.908$
Question 8: $40320; 0.0142; \frac{1}{4}$
Question 9: $\text{r}=0.978; a=0.182, b=2.56$; \$293
Question 10: $0.0336; \bar{y}=0.64, s^2 = 0.0400$; Sufficient evidence.
Question 11: $\frac{48+x}{80+x}, \frac{32+x}{80+x}; x= 16; \frac{25}{32}; \frac{7}{16}; \frac{341}{8930}$
Question 12: $0.773; 0.0514; 0.866; 0.362$

MF26

### 2017 A-level H2 Mathematics (9740) Paper 1 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

This is answers for H2 Mathematics (9740). H2 Mathematics (9758), click here.

Numerical Answers (click the questions for workings/explanation)

Question 1: $ax + (2a - \frac{a^2}{2})x^2 + (\frac{a^3}{3} + 2a - a^2) x^3$; $a = 4$
Question 2: $x \textgreater \frac{1}{\sqrt{b}} + a$ or $x \textless a$
Question 3: 2
Question 4: $a = 4, b =1$; translate the graph 4 units in negative y-direction and translate the graph 2 units in positive x-direction.
Question 5: $a = -1.5, b = 1.5, c = 7$; $x \approx -1.33$; $x \approx -0.145$ or $x \approx 1.15$
Question 6: $r = a + (\frac{d - a \cdot n}{b \cdot n}) b$
Question 7: $(\frac{1}{a}, \frac{1}{ae}); \frac{1}{a^2}$
Question 8: $z = -1 + 2i$ or $z = 2 - i$; $p =-6, q=-66$; $(w^2 - 2w+2)(w^2-4w+29)$
Question 9: $U_n = 2An - A +B$; $A = 3, B =-9$; $k=4$; $\frac{1}{4} (n^4 + 2n^3 + n^2)$ ; $e^x$
Question 10: $a = -4.4$; $R(1.5, 0.5, -1)$; $\frac{1}{2}\sqrt{10}$
Question 11: $\frac{dv}{dt}=c$; $v = 10t +4$; $v = \frac{1}{k}(10- 10 e^{-kt})$

### Relevant materials

MF26

To be honest, this paper is really the same as the H2 Mathematics (9758). They just rephrased everything. You can see for yourself here.

### 2017 A-level H2 Mathematics (9740) Suggested Solutions

Please take note that this is the solutions for H2 Mathematics (9740)
Click here for H2 Mathematics (9758) suggested solutions

Paper 1

Paper 2

MF26

### 2017 A-level H2 Mathematics (9758) Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

Paper 1

Paper 2

### Relevant materials

MF26

Comments on 2017 Paper

### 2017 A-level H2 Mathematics (9758) Paper 2 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

This is answers for H2 Mathematics (9740). H2 Mathematics (9740), click here.

Numerical Answers (click the questions for workings/explanation)

Question 1: $2 \sqrt{15}; xy=6$
Question 2: $d = 1.5;~ r \approx 1.21 \text{~or~} r \approx -1.45;~n=42$
Question 3: $(\frac{1}{2}a, 0), (0,b);~ (a+1, 0,);~ (\frac{a+1}{2}, 0);~ (0, a), (b, 0);~ a = 1;~ gg(x) = x, x \in \mathbb{R}, x \neq 1 , ~ g^{-1}(x) = 1 - \frac{1}{1-x}, x \in \mathbb{R}, x \neq 1;~b= 2 \text{~or~}0$
Question 4: $15.1875;~ \frac{\pi}{2a(a-1)};~ b = \frac{1}{2} + \frac{1}{2}\sqrt{1-a+a^2}$
Question 5: $\frac{5}{12}, \frac{5}{14}, \frac{5}{28}, \frac{1}{21};~ \mathbb{E}(T) = \frac{20}{7}, \text{Var}(T) = \frac{75}{98};~ 0.238$
Question 6: $955514880;~ 1567641600;~ \frac{1001}{3876}$
Question 7: $31.8075, 0.245;~ p = 0.0139$; Do not reject $h_0$, Not necessary.
Question 8: Model (D); $a \approx 4.18, b \approx 74.0;~ r \approx 0.981$
Question 9: $0.632;~ 1.04 \times 10^{-4};~ 0.458;~ 0.421;~ 0.9408$
Question 10: $0.345;~ 0.612;~ \mu = 12.3, \sigma = 0.475;~ k \approx 55.7$

MF26

### 2017 A-level H2 Mathematics (9758) Paper 1 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

This is answers for H2 Mathematics (9758). H2 Mathematics (9740), click here.

Numerical Answers (click the questions for workings/explanation)

Question 1: $ax + (2a - \frac{a^2}{2})x^2 + (\frac{a^3}{3} + 2a - a^2) x^3$; $a = 4$
Question 2: $x \textgreater \frac{1}{\sqrt{b}} + a$ or $x \textless a$
Question 3: $x = \pm \frac{1}{\sqrt{2}}$ ; Maximum point
Question 4: $a = 4, b =1$; translate the graph 4 units in negative y-direction and translate the graph 2 units in positive x-direction.
Question 5: $a = -1.5, b = 1.5, c = 7$; $x \approx -1.33$; $x \approx -0.145$ or $x \approx 1.15$
Question 6: $r = a + (\frac{d - a \cdot n}{b \cdot n}) b$
Question 7: $\frac{\text{sin}(2mx-2nx)}{4m-4n} - \frac{\text{sin}(2mx+2nx)}{4m+4n} + C$; $\pi$
Question 8: $z = -1 + 2i$ or $z = 2 - i$; $p =-6, q=-66$; $(w^2 - 2w+2)(w^2-4w+29)$
Question 9: $U_n = 2An - A +B$; $A = 3, B =-9$; $k=4$; $\frac{1}{4} (n^4 + 2n^3 + n^2)$ ; $e^x$
Question 10: $a = -4.4$; $R(1.5, 0.5, -1)$; $\frac{1}{2}\sqrt{10}$
Question 11: $\frac{dv}{dt}=c$; $v = 10t +4$; $v = \frac{1}{k}(10- 10 e^{-kt})$; $9.21s$

### Relevant materials

MF26

Firstly, to do well in this paper, student has to be quite intuitive, to be comfortable with the levels of unfamiliarity.

Q1. Simple expansion using MF26. If you used it carefully, it should provide some guidance to Q9(c) actually.
Q2. Simple graphings, using secondary school modulus function knowledge.
Q3. Students have to know how to use $y = 5x$ to find back the y-coordinate.
Q4. (a) is even easier if you simply did long division.
Q5. Remainder Theorem from Secondary School for (i). (ii), students need to be alert that when the gradient is ALWAYS positive, the function is strictly increasing, not just increasing.
Q6. Interesting question, that is similar to the Specimen Paper.
Q7. Use of Factor Theorem form MF26 will make this integration much comfortable. By parts work too.
Q8. Standard complex number practice question.
Q9. Very interesting questions. Especially (c), but like mentioned a keen student who did Q1 well, will realise the sum to infinity is simply from MF26.
Q10. Standard vectors questions. Just read carefully and it will be manageable.
Q11. Simple DE too. For the terminal velocity, just need to read that its “after a long time”.

Overall, a manageable paper.
Now things that have yet to come out…
Reciprocal Graph, Area/ Volume, Parametric Equations, Min/Max Problem, APGP, Function, Integration Techniques, Complex Number (Polar Form, Modulus, Argument), Vectors (Planes, Ratio Theorem), Small angle approximation

### In times of economic hardship, should a country still be expected to provide financial or material aid to others?

Students are expected to address the criteria of this question throughout the essay; it being in times of economic hardship. For a quality essay, the terms “should” and “expected” should be addressed as well. For instance, a country should still give aid, but perhaps not be expected at a time when its survival is in question, and it does not have a healthy budget balance.

Financial aid- capital/loans/money

Material aid- manpower/distribution of basic goods and necessities

• Provision of aid during economic hard times could be a political statement and commitment to the recipient country, helping to foster greater political relations in the long term. Giving of aid should be expected especially if the recipient country needs it more than the donor country. Such circumstances could be when the recipient country is facing civil war and there is urgent need of aid to cease the fighting etc. Another possible instance could be during times of natural disasters/emergencies. Also, for most of the donor country, aid takes up a small portion of their budget, hence it should not affect the current economy severely even if the country continues to give out aid during hard times. Aid accounts for 0.5% of the US budget yearly.
• Governments should be responsible and accountable to their citizens first especially during hard times, hence aid should be allocated domestically rather than elsewhere. The dollar votes of the citizens and their voices are important, and it is only right that countries should be concerned with their own self-preservation before others. After all, an economically prosperous country will then be able to contribute more to the international community, rather than a slow and stagnate economy that is facing difficult times.
• Perhaps a country should look at other means of support, rather than the provision of aid during bad times. It is presumptuous to assume that aid helps to alleviate the problems faced by the recipient countries. Often, aid may actually harm local industries and foster this sense of self-entitlement and dependency on the donor nations.
• Legal obligations under international law could possibly bind countries to continue giving aid to another country. A short term economic difficulty does not suffice to repudiate this commitment, especially when contracts have been signed beforehand, and the donor country may risk ruining their legitimacy and international standing.

In dire situations, countries should still continue to give aid to one another. However, expectations to scale down in terms of aid is definitely reasonable and justifiable.

### 2016 A Level H2 Physics (9646) Paper 1 Suggested Solutions

All solutions here are SUGGESTED. Casey will hold no liability for any errors. Comments are entirely personal opinions.

1. B
2. C
3. B
4. D
5. D
6. C
7. D
8. D
9. B
10. C
11. A
12. D
13. D
14. C
15. C
16. A
17. D
18. A
19. B
20. D
21. Question 21 is a flawed question. When unpolarised light goes through a polarizer, the I is halved while the A is reduced by a factor of root 2. But based on the information Cambridge provides, the answer is C.
22. D
23. D
24. C
25. C
26. B
27. C
28. A
29. B
30. B
31. A
32. C
33. D
34. B
35. B
36. B
37. D
38. C
39. C
40. C

Note to all: Casey will not respond to most of the comments as he is busy. You may contact him by SMS at  +65 9474 5005 if you have a burning question.

Feel free to explain the answers, if you are confident. Many thanks.