2012 A-level H2 Mathematics (9740) Paper 1 Question 9 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

(i)
\vec{AB} = \begin{pmatrix}-1\\-8\\1\end{pmatrix} - \begin{pmatrix}7\\8\\9\end{pmatrix} = \begin{pmatrix}--8\\-16\\-8\end{pmatrix}

l_{AB}: r = \begin{pmatrix}7\\8\\9\end{pmatrix} + \lambda \begin{pmatrix}1\\2\\1\end{pmatrix}, \lambda \in \mathbb{R}

(ii)
\vec{ON} = \begin{pmatrix}{7+\lambda}\\{8+2\lambda}\\{9+\lambda}\end{pmatrix} for some \lambda.

\vec{CN} = \begin{pmatrix}{7+\lambda}\\{8+2\lambda}\\{9+\lambda}\end{pmatrix} - \begin{pmatrix}1\\8\\3\end{pmatrix} = \begin{pmatrix}{6+\lambda}\\{2\lambda}\\{6+\lambda}\end{pmatrix}

Since \vec{CN} is perpendicular to l_{AB}

\Rightarrow \begin{pmatrix}{6+\lambda}\\{2\lambda}\\{6+\lambda}\end{pmatrix} \bullet \begin{pmatrix}1\\2\\1\end{pmatrix} = 0

\lambda = -2

\therefore, \vec{ON} = \begin{pmatrix}5\\4\\7\end{pmatrix}

\vec{AN} = \begin{pmatrix}-2\\-4\\-2\end{pmatrix} = \frac{1}{4} \vec{AB}

\therefore, AN : AB = 1: 3

(iii)
Let C’ be the point of reflection of C in line AB.

\vec{AC'} = \vec{AC} + 2\vec{CN} = \begin{pmatrix}2\\-8\\2\end{pmatrix}

l_{AB}^R: x - 7 = \frac{y-8}{-4} = z-9

KS Comments:

A few steps above are being skipped as it is really inconvenient to type the vectors in LaTeX. Please let me know if it caused problems for you.

Leave a Comment

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search