2013 A-level H2 Mathematics (9740) Paper 1 Question 6 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

Equation of plane OABC: \textbf{r} = \lambda \textbf{a} + \mu \textbf{b}, for \lambda, \mu \in \mathbb{R}
Since \textbf{c} is on plane OABC, \textbf{c} =\lambda \textbf{a} + \mu \textbf{b}  for \lambda, \mu are constants

Using the ratio theorem formula, \vec{ON}=\frac{4\mathbf{a}+3\mathbf{c}}{7}

Area ONC = Area OMC
\frac{1}{2} |{\frac{4\mathbf{a}+3\mathbf{c}}{7} \times \mathbf{c}}| = \frac{1}{2}|{\frac{1}{2}\mathbf{b} \times \mathbf{c}}|

\frac{1}{7} |{4 \mathbf{a} \times \mathbf{c} + 3\mathbf{c} \times \mathbf{c}}| = \frac{1}{2}|{\mathbf{b} \times (\lambda \mathbf{a} + \mu \mathbf{b})}|

\frac{2}{7} |{4\mathbf{a} \times (\lambda \mathbf{a} + \mu \mathbf{b})}| = |{\mathbf{b} \times \lambda \mathbf{a} + \mathbf{b} \times \mu \mathbf{b}}|

\frac{2}{7} |{4\mathbf{a} \times \lambda \mathbf{a} + 4\mathbf{a} \times \mu \mathbf{b}}| = \frac{1}{2}|{\mathbf{b} \times \lambda \mathbf{a}}|

\frac{8\mu}{7} |{\mathbf{a} \times \mathbf{b}}| = \lambda|{\mathbf{a} \times \mathbf{b}}|

\frac{8\mu}{7} = \lambda

KS Comments:

For (i), some students can rely on the law of parallelogram to show too. For (iii), students must know all their vector product manipulations well to do this.

Showing 2 comments
    pingbacks / trackbacks

    Leave a Comment

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt

    Start typing and press Enter to search