Trigonometry Formulae & Applications (Part 2)

I meant to share more on factor Formulae today. However, a few students are not so sure how to get the R-formulae correctly during their preliminary exams recently. So I thought that I’ll share how they can derive the R-Formulae from the MF26.

The following is the R-Formulae which students should have memorised. It is under assumed knowledge, just saying…

a \text{cos} \theta \pm b \text{sin} \theta = R \text{cos} (\theta \mp \alpha)

a \text{sin} \theta \pm b \text{cos} \theta = R \text{sin} (\theta \pm \alpha)

where R = \sqrt{a^2 + b^2} and \text{tan} \alpha = \frac{b}{a} for a > 0, b > 0 and \alpha is acute.

So here, I’ll write the addition formulae that’s found in MF26.

\text{sin}(A \pm B) \equiv \text{sin}A \text{cos} B \pm \text{cos} A \text{sin} B

\text{cos}(A \pm B) \equiv \text{cos}A \text{cos} B \mp \text{sin} A \text{sin} B

I’ll use an example I discussed previously.

f(x) = 3 \text{cos}t - 2 \text{sin}t

Write f(x) as a single trigonometric function exactly.

Lets consider the formulae from MF26.

\text{cos}(A \pm B) \equiv \text{cos}A \text{cos} B \mp \text{sin} A \text{sin} B

R\text{cos}(A \pm B) \equiv R \text{cos}A \text{cos} B \mp R \text{sin} A \text{sin} B

We can let

3 = R \text{cos} B ---(1)

2 = R \text{sin} B ---(2)

\Rightarrow \sqrt{ 3^2 + 2^2 } = \sqrt{ R^2 \text{cos}^2 B + R^2 \text{sin}^2 B}

\Rightarrow \sqrt{13} = R

\Rightarrow \frac{R \text{sin} B}{R \text{cos} B} = \frac{2}{3}

\Rightarrow \text{tan} B = \frac{2}{3}

Putting things together, we have that

 f(x) = \sqrt{13} \text{cos} ( t + \text{tan}^{\text{-1}} (\frac{2}{3}))

    pingbacks / trackbacks

    Leave a Comment

    17 − 9 =

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt

    Start typing and press Enter to search