Some students remarked on why I actually recognise e, that is, e=2.718281828.... Well, e is a rather unique constants. Firstly, for all JC students, we see it our daily algebra & complex numbers. Students exposed to university statistics will see e appearing in the formula for normal distribution, that is, f(x | \mu , \sigma^2) = \frac{1}{\sqrt{2 \sigma^2 \pi}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}}.

Secondly, the story of how it came about is pretty cool as you will observed in the video below.

The Story of e

Hopefully it provides you with another perspective towards this constants! And now you should be more cautious when signing up savings plans that give interest per annum or per month.

P.S. I once confused a banker when I asked her about this. 🙂

Leave a Reply