June Revision Exercise 8 Q5

(i)
l_{AB}: r = \begin{pmatrix}4 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix}, \lambda \in \mathbb{R}

l_{AB}: r = \begin{pmatrix}7 \\ -3 \\ 13 \end{pmatrix} + \mu \begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix}, \mu \in \mathbb{R}

If they intersect, then \begin{pmatrix}7 \\ -3 \\ 13 \end{pmatrix} + \mu \begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix} = \begin{pmatrix}4 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} for some \lambda \text{ and } \mu

Solving with GC, we have \lambda = -1, \mu = 2. Thus, the lines intersect.

(ii)
\begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix} \times \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix}

Equation of plane: r \bullet \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix} = \begin{pmatrix}4 \\ 1 \\ 2 \end{pmatrix} \bullet \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix} = -19

(iii)
Required distance

= \frac{|\vec{AE}\bullet \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix}|}{|\sqrt{9^2 + 7^2 + 5^2}|}

= \frac{3}{\sqrt{155}}

(iv)
Area of quadrilateral

= \text{ Area Triangle } ABC + \text{ Area Triangle } ACD

= \frac{1}{2}|\vec{CA} \times \vec{CD}| + \frac{1}{2}|\vec{AC} \times \vec{AB}|

= \frac{1}{2} |{\begin{pmatrix}-3 \\ 4 \\ -11 \end{pmatrix} \times \begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix}}| + \frac{1}{2} |{\begin{pmatrix}3 \\ -4 \\ 1 \end{pmatrix} \times \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix}}|

=\frac{1}{2} |\begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix}| + \frac{1}{2}|\begin{pmatrix}-18 \\ 14 \\ 10 \end{pmatrix}|

= \frac{1}{2}(\sqrt{81 + 49 + 25} + 2\sqrt{81 + 49 + 25})

=\frac{3}{2}\sqrt{155}

Back to June Revision Exercise 8.

Comments
    pingbacks / trackbacks

    Leave a Comment

    12 − twelve =

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt

    Start typing and press Enter to search