2002 A-level H2 Mathematics Paper 2 Question 30 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

\frac{7 \times 6 \times 5}{7 \times 7 \times 7} = \frac{30}{49}
Alternatively, \frac{^7 P_3}{7^3}

When n=4, required probability = \frac{^7 P_4}{7^3} = \frac{7 \times 6 \times 5 \times 4}{7 \times 7 \times 7 \times 7} = \frac{120}{343}

Key GC with either sequence or use table functions.
We want to solve \frac{^12 C_n \times n!}{12^n} \textless \frac{1}{2}
Plot y_1 = \frac{^12 C_x \times x!}{12^x} and check for the x that gives a corresponding y_1 value that is less than \frac{1}{2}

When n =21, probability that all 21 people have different birthdays = \frac{^365 P_21}{365^21} = 0.55631

Probability that all 21 people have different birthdays = \frac{^365 P_23}{365^23} = 0.4927

Thus, when n =23, probability that at least two of the people are the same birthday = 1 - 0.4927 = 0.5073 (more than \frac{1}{2})

KS Comments:

A very interesting probability question here. This show show counter intuitive probability is! The results shows that the we can expect to find someone with the same birthday in a room of 23, more than half the time.

Leave a Comment

3 × 2 =

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search