Continuous Random Variables

We look at the definitions first.

A continuous random variable, X, has a probability density function (PDF), f(\bullet) if f(x) \ge 0 and for all events A
P(X \in A) = \int_A f(y) dy
The CDF and PDF are related by F(x) = \int_{-\infty}^x f(y) dy
It is good to know that we have P(X \in (x - \frac{\epsilon}{2}, x + \frac{\epsilon}{2})) \approx \epsilon f(x)

We X has a normal distribution, X \sim N(\mu, {\sigma}^2), and f(x) = \frac{1}{\sqrt{2 \pi {\sigma}^2}}e^(-\frac{(x - \mu)^2}{2 {\sigma}^2}). And \mathbb{E}[X] = \mu while Var(X) = {\sigma}^2

Log normal Distribution Source: www.me.utexas.edu

Log normal Distribution Source: www.me.utexas.edu

We also have the log-normal distribution, X \sim LN (\mu, {\sigma}^2) and log(X) \sim N(\mu, {\sigma}^2). Here, \mathbb{E} [X] = e^(\mu + \frac{{\sigma}^2}{2}) and Var(X) = e^(2 \mu + {\sigma}^2) (e^{{\sigma}^2} - 1). The log-normal distribution is very important in financial applications, for starters, the Black Scholes Equation.

Comments
pingbacks / trackbacks

Leave a Comment

18 − 12 =

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search