Deriving the polar form for complex number

I always stress to students the importance of the basics of complex numbers, that is

z
=x+iy
=re^{i \theta}
=r(cos{\theta}+isin{\theta})

The three forms of the complex numbers. I have shown how to derive from the cartesian (x+iy) to trigonometric form (r(cos{\theta}+isin{\theta})) form. But I seldom show students how to derive the polar form due to the rigor. So here we go. Lets first identify a few formulas from MF15.

e^{x}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}+...

cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}+...

sinx=x-\frac{x^3}{3!}+\frac{x^5}{5!}+...

Let us consider the polar form then.

e^{i\theta}=1+{i\theta}+\frac{{i\theta}^2}{2!}+\frac{{i\theta}^3}{3!}+\frac{{i\theta}^4}{4!}+\frac{{i\theta}^5}{5!}+...

Resolving the i's

e^{i\theta}=1+{i\theta}-\frac{{\theta}^2}{2!}-\frac{i{\theta}^3}{3!}+\frac{{\theta}^4}{4!}+\frac{i{\theta}^5}{5!}+...

Rearranging them

e^{i\theta}=1-\frac{{\theta}^2}{2!}+\frac{{\theta}^4}{4!}+...+{i\theta}-\frac{i{\theta}^3}{3!}+\frac{i{\theta}^5}{5!}+...

Notice if we factorise i out

e^{i\theta}=1-\frac{{\theta}^2}{2!}+\frac{{\theta}^4}{4!}+...+i[{\theta}-\frac{{\theta}^3}{3!}+\frac{{\theta}^5}{5!}]+...

Then with the formula we started with,

e^{i\theta}=cos{\theta}+isin{\theta}

Voila! We are done and we have successfully derive our trigonometric form.

Leave a Comment

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search