A little reminder to students doing Calculus now

When \frac{dy}{dx} = 0, it implies we have a stationary point.

To determine the nature of the stationary point, we can do either the first derivative test or the second derivative.

The first derivative test:

First Derivative Test

Students should write the actual values of \alpha^-, \alpha, \alpha^+ and \frac{dy}{dx} in the table.

We use this under these two situations:
1. \frac{d^2y}{dx^2} is difficult to solve for, that is, \frac{dy}{dx} is tough to be differentiated
2. \frac{d^2y}{dx^2} = 0

The second derivative test:

Second Derivative Test

Other things students should take note is concavity and drawing of the derivative graph.

Leave a Comment

20 − 15 =

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search