H2 Math Sun 1130am

This page contains all questions and answers asked by students from this class. The most recent questions will be at the top.

MF26


Vectors Q7 [Homework] (i)
\vec{OL} = \begin{bmatrix}2\\ 7\\ -1\end{bmatrix}
\vec{OM} = \begin{bmatrix}9\\ 0\\ -8\end{bmatrix}
Using ratio theorem, \vec{OP} = \frac{2\vec{OM}+5\vec{OL}}{7} = \begin{bmatrix}4\\ 5\\ -3\end{bmatrix}
Since \vec{OP} is perpendicular to \begin{bmatrix}4\\ 1\\ q\end{bmatrix}
\Rightarrow \begin{bmatrix}4\\ 5\\ -3\end{bmatrix} \bullet \begin{bmatrix}4\\ 1\\ q\end{bmatrix} = 0
q = 7

(ii)
To be a parallelogram, \vec{OM} = \vec{LN} = \vec{ON} - \vec{OL}
\vec{ON} =\begin{bmatrix}11\\ 7\\ -9\end{bmatrix}
Area = |\vec{OM} \times \vec{OL}|
= |\begin{bmatrix}56\\ -7\\ 63\end{bmatrix}|
= \sqrt{7154} = 7 \sqrt{146} units^2

(iii)
Let \vec{OQ} = \begin{bmatrix}x\\ y\\ 0\end{bmatrix}
Since |\vec{OQ}| = |\vec{OP}|
\sqrt{x^2 + y^2} = \sqrt{50} — (1)
\begin{bmatrix}x\\ y\\ 0\end{bmatrix} \bullet \begin{bmatrix}1\\ 0\\ 0\end{bmatrix} = |\begin{bmatrix}x\\ y\\ 0\end{bmatrix} | |\begin{bmatrix}1\\ 0\\ 0\end{bmatrix} | \mathrm{cos} \theta — (2)
Solving, x = \sqrt{50} \mathrm{cos} \theta = 5 \sqrt{2} \mathrm{cos} \theta
y = \sqrt{50} \mathrm{sin} \theta = 5 \sqrt{2} \mathrm{sin} \theta
\Rightarrow \vec{OQ} = \begin{bmatrix}{5 \sqrt{2} \mathrm{cos} \theta}\\ {5 \sqrt{2} \mathrm{sin} \theta}\\ 0\end{bmatrix}


Vectors Q8 [Homework] (i)
\vec{OA} = \begin{bmatrix}-5\\ -2\\ 3\end{bmatrix}
\vec{OC} = \begin{bmatrix}5\\ 2\\ 6\end{bmatrix}
\vec{AC} = \vec{OC} - \vec{OA} = \begin{bmatrix}5\\ 2\\ 6\end{bmatrix} - \begin{bmatrix}-5\\ -2\\ 3\end{bmatrix} = \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}
l: r = \begin{bmatrix}5\\ 2\\ 6\end{bmatrix} + \lambda \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}, \lambda \in \mathbb{R}

(ii)
Let R be the top of the vertical pillar,
l_{QR}: r = \begin{bmatrix}15\\ 6\\ 0\end{bmatrix} + \mu \begin{bmatrix}0\\ 0\\ 1\end{bmatrix}, \mu \in \mathbb{R}
Since R is collinear with A and C, R is the intersection of line AC and QR.
\begin{bmatrix}{5 + 10 \mu}\\ {2 + 4 \mu}\\ {6 + 3 \mu}\end{bmatrix} = \begin{bmatrix}15\\ 6\\ {\mu}\end{bmatrix}
\Rightarrow \lambda = 1, \mu = 9
\vec{OR} = \begin{bmatrix}15\\ 6\\ 9\end{bmatrix}, and the height is 9m.

(iii)
\vec{OD} = \begin{bmatrix}-5\\ 2\\ 6\end{bmatrix}
\vec{AD} = \vec{OD} - \vec{OA} = \begin{bmatrix}0\\ 4\\ 3\end{bmatrix}
\vec{AX} = (\vec{AD} \bullet \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{| \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}|}) \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{| \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}|}
= (\begin{bmatrix}0\\ 4\\ 3\end{bmatrix} \bullet \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{\sqrt{125}}) \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{\sqrt{125}}
= \frac{25}{125} \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}
= \begin{bmatrix}2\\ 0.8\\ 0.6\end{bmatrix}
\vec{OX} = \vec{OA} + \vec{AX} = \begin{bmatrix}-3\\ 1.2\\ 3.6\end{bmatrix}


Vectors Q9 [Homework] (i)
\vec{AB} = \begin{bmatrix}-4\\ 5\\ 3\end{bmatrix}
\vec{AC} = \begin{bmatrix}1\\ -3\\ 6\end{bmatrix}
Normal of \pi_1, ~n_1=\begin{bmatrix}-4\\ 5\\ 3\end{bmatrix} \times \begin{bmatrix}1\\ -3\\ 6\end{bmatrix} = \begin{bmatrix}-21\\ -21\\ -7\end{bmatrix} = -7 \begin{bmatrix}3\\ 3\\ 1\end{bmatrix}
\pi_1: r \bullet \begin{bmatrix}3\\ 3\\ 1\end{bmatrix} = \begin{bmatrix}5\\ -1\\ 0\end{bmatrix} \bullet \begin{bmatrix}3\\ 3\\ 1\end{bmatrix} = 12

(ii)
Let \theta be the acute angle
\theta - \mathrm{cos}^{-1} |\frac{\begin{bmatrix}3\\ 3\\ 1\end{bmatrix} \bullet \begin{bmatrix}1\\ -1\\ 1\end{bmatrix}}{\sqrt{19}} \sqrt{3}|
\theta = 82.4 ^{\circ}

(iii)
3x + 3 y + z = 12 — (1)
x - y + z = 1 — (2)

Using GC, l: r = \begin{bmatrix}2.5\\ 1.5\\ 0\end{bmatrix} + \lambda \begin{bmatrix}-2\\ 1\\ 3\end{bmatrix}, \lambda \in \mathbb{R}

(iv)
Let n_3 be the normal of \pi_3
Length of projection = |\vec{AB} \times n_3|
= \frac{1}{\sqrt{26}} |\begin{bmatrix}4\\ -5\\ 3\end{bmatrix} \times \begin{bmatrix}5\\ -1\\ 0\end{bmatrix}| = 15\sqrt{\frac{3}{26}}

(v)
Required distance = \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \sqrt{3} units

(vi)
Let normal of \pi_4 = n_4 = \begin{bmatrix}-2\\ 1\\ 3\end{bmatrix} \times \begin{bmatrix}1\\ -1\\ 1\end{bmatrix} = \begin{bmatrix}4\\ 5\\ 1\end{bmatrix}
\pi_4: r \bullet \begin{bmatrix}4\\ 5\\ 1\end{bmatrix} = 4k+6
If \pi_1, \pi_2 \mathrm{~and~} \pi_4 intersect at l,n\begin{bmatrix}2.5\\ 1.5\\ 0\end{bmatrix} lies on pi_4
\Rightarrow \begin{bmatrix}2.5\\ 1.5\\ 0\end{bmatrix} \bullet \begin{bmatrix}4\\ 5\\ 1\end{bmatrix} = 4k+6
k = \frac{23}{8}

Leave a Comment

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search