Random Sec 4 Differentiations

B6

y = 3e^x + \frac{4}{e^x}

\frac{dy}{dx} = 3e^x - \frac{4}{e^x}

\frac{d^2y}{dx^2} = 3e^x + \frac{4}{e^x}

let \frac{dy}{dx} = 0

3e^x - \frac{4}{e^x} = 0

3e^{2x} = 4

2x = \mathrm{ln} \frac{4}{3}

x = \frac{1}{2} \mathrm{ln} \frac{4}{3}

Sub x = \frac{1}{2} \mathrm{ln} \frac{4}{3} to \frac{d^2y}{dx^2}

\frac{d^2y}{dx^2} > 0 Thus, it is a min point.

C7

y = \mathrm{ln} \frac{5-4x}{3+2x}

y = \mathrm{ln} (5-4x) - \mathrm{ln} (3+2x)

\frac{dy}{dx} = \frac{-4}{5-4x} - \frac{2}{3+2x}

let \frac{dy}{dx} = 0

\frac{-4}{5-4x} - \frac{2}{3+2x} = 0

\frac{-4}{5-4x} = \frac{2}{3+2x}

-4(3+2x) = 2(5-4x)

-12 - 8x = 10 - 8x

-12 = 10 (NA).

There are no stationary points for this curve.

C8

x = \frac{1}{3}e^{y(2x+5)}

\mathrm{ln}(3x) = y(2x+5)

\frac{\mathrm{ln}(3x)}{2x+5} = y

y = \frac{\mathrm{ln}(3x)}{2x+5}

\frac{dy}{dx} = \frac{\frac{1}{x}(2x+5) - \mathrm{ln}(3x) \times 2}{(2x+5)^2}

Let x = e^2

\frac{dy}{dx} = \frac{\frac{1}{e^2}(2e^2+5) - \mathrm{ln}(3e^2) \times 2}{(2e^2+5)^2}

Evaluate with a calculator…

Leave a Comment

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search