June Revision Exercise 3 Q3


Let AB=y=\frac{40-x}{2}

h = \sqrt{y^2-(\frac{x}{2})^2}=2\sqrt{100-5x}

z = \frac{1}{2}xh=\frac{1}{2}x(2\sqrt{100-5x}=x\sqrt{100-5x}


\frac{dz}{dx}=\sqrt{100-5x} + x\frac{1}{2}(-5)(100-5x)^{-\frac{1}{2}}


\frac{dz}{dx}=0 \Rightarrow x=\frac{40}{3}

*Students are expected to prove that x = \frac{40}{3} gives the maximum area.

x^3 + 2y^3 +3xy=k


\frac{dy}{dx}=\frac{-y-x^2}{2y^2+x}  (b)(ii) Tangent parallel tolatex x-axislatex \Rightarrow \frac{dy}{dx}=0latex y=-x^2Sublatex y=-x^2intolatex x^3 + 2y^3 +3xy=klatex x^3 + 2(-x^2)^3 +3x(-x^2)=klatex 2x^6 + 2x^3 + k=0(b)(iii) When the linelatex y=-1is a tangent to C,latex -1=-x^2latex x =\pm xWhenlatex x = 1, k=-4Whenlatex x = -1, k=0$

Back to June Revision Exercise 3

Leave a Comment

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt

Start typing and press Enter to search