H2 Math Sun 930am

This page contains all questions and answers asked by students from this class. The most recent questions will be at the top.

MF26


Vectors Q7 [Homework] (i)
\vec{OL} = \begin{bmatrix}2\\ 7\\ -1\end{bmatrix}
\vec{OM} = \begin{bmatrix}9\\ 0\\ -8\end{bmatrix}
Using ratio theorem, \vec{OP} = \frac{2\vec{OM}+5\vec{OL}}{7} = \begin{bmatrix}4\\ 5\\ -3\end{bmatrix}
Since \vec{OP} is perpendicular to \begin{bmatrix}4\\ 1\\ q\end{bmatrix}
\Rightarrow \begin{bmatrix}4\\ 5\\ -3\end{bmatrix} \bullet \begin{bmatrix}4\\ 1\\ q\end{bmatrix} = 0
q = 7

(ii)
To be a parallelogram, \vec{OM} = \vec{LN} = \vec{ON} - \vec{OL}
\vec{ON} =\begin{bmatrix}11\\ 7\\ -9\end{bmatrix}
Area = |\vec{OM} \times \vec{OL}|
= |\begin{bmatrix}56\\ -7\\ 63\end{bmatrix}|
= \sqrt{7154} = 7 \sqrt{146} units^2

(iii)
Let \vec{OQ} = \begin{bmatrix}x\\ y\\ 0\end{bmatrix}
Since |\vec{OQ}| = |\vec{OP}|
\sqrt{x^2 + y^2} = \sqrt{50} — (1)
\begin{bmatrix}x\\ y\\ 0\end{bmatrix} \bullet \begin{bmatrix}1\\ 0\\ 0\end{bmatrix} = |\begin{bmatrix}x\\ y\\ 0\end{bmatrix} | |\begin{bmatrix}1\\ 0\\ 0\end{bmatrix} | \mathrm{cos} \theta — (2)
Solving, x = \sqrt{50} \mathrm{cos} \theta = 5 \sqrt{2} \mathrm{cos} \theta
y = \sqrt{50} \mathrm{sin} \theta = 5 \sqrt{2} \mathrm{sin} \theta
\Rightarrow \vec{OQ} = \begin{bmatrix}{5 \sqrt{2} \mathrm{cos} \theta}\\ {5 \sqrt{2} \mathrm{sin} \theta}\\ 0\end{bmatrix}


Vectors Q8 [Homework] (i)
\vec{OA} = \begin{bmatrix}-5\\ -2\\ 3\end{bmatrix}
\vec{OC} = \begin{bmatrix}5\\ 2\\ 6\end{bmatrix}
\vec{AC} = \vec{OC} - \vec{OA} = \begin{bmatrix}5\\ 2\\ 6\end{bmatrix} - \begin{bmatrix}-5\\ -2\\ 3\end{bmatrix} = \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}
l: r = \begin{bmatrix}5\\ 2\\ 6\end{bmatrix} + \lambda \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}, \lambda \in \mathbb{R}

(ii)
Let R be the top of the vertical pillar,
l_{QR}: r = \begin{bmatrix}15\\ 6\\ 0\end{bmatrix} + \mu \begin{bmatrix}0\\ 0\\ 1\end{bmatrix}, \mu \in \mathbb{R}
Since R is collinear with A and C, R is the intersection of line AC and QR.
\begin{bmatrix}{5 + 10 \mu}\\ {2 + 4 \mu}\\ {6 + 3 \mu}\end{bmatrix} = \begin{bmatrix}15\\ 6\\ {\mu}\end{bmatrix}
\Rightarrow \lambda = 1, \mu = 9
\vec{OR} = \begin{bmatrix}15\\ 6\\ 9\end{bmatrix}, and the height is 9m.

(iii)
\vec{OD} = \begin{bmatrix}-5\\ 2\\ 6\end{bmatrix}
\vec{AD} = \vec{OD} - \vec{OA} = \begin{bmatrix}0\\ 4\\ 3\end{bmatrix}
\vec{AX} = (\vec{AD} \bullet \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{| \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}|}) \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{| \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}|}
= (\begin{bmatrix}0\\ 4\\ 3\end{bmatrix} \bullet \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{\sqrt{125}}) \frac{\begin{bmatrix}10\\ 4\\ 3\end{bmatrix}}{\sqrt{125}}
= \frac{25}{125} \begin{bmatrix}10\\ 4\\ 3\end{bmatrix}
= \begin{bmatrix}2\\ 0.8\\ 0.6\end{bmatrix}
\vec{OX} = \vec{OA} + \vec{AX} = \begin{bmatrix}-3\\ 1.2\\ 3.6\end{bmatrix}


Vectors Q9 [Homework] (i)
\vec{AB} = \begin{bmatrix}-4\\ 5\\ 3\end{bmatrix}
\vec{AC} = \begin{bmatrix}1\\ -3\\ 6\end{bmatrix}
Normal of \pi_1, ~n_1=\begin{bmatrix}-4\\ 5\\ 3\end{bmatrix} \times \begin{bmatrix}1\\ -3\\ 6\end{bmatrix} = \begin{bmatrix}-21\\ -21\\ -7\end{bmatrix} = -7 \begin{bmatrix}3\\ 3\\ 1\end{bmatrix}
\pi_1: r \bullet \begin{bmatrix}3\\ 3\\ 1\end{bmatrix} = \begin{bmatrix}5\\ -1\\ 0\end{bmatrix} \bullet \begin{bmatrix}3\\ 3\\ 1\end{bmatrix} = 12

(ii)
Let \theta be the acute angle
\theta - \mathrm{cos}^{-1} |\frac{\begin{bmatrix}3\\ 3\\ 1\end{bmatrix} \bullet \begin{bmatrix}1\\ -1\\ 1\end{bmatrix}}{\sqrt{19}} \sqrt{3}|
\theta = 82.4 ^{\circ}

(iii)
3x + 3 y + z = 12 — (1)
x - y + z = 1 — (2)

Using GC, l: r = \begin{bmatrix}2.5\\ 1.5\\ 0\end{bmatrix} + \lambda \begin{bmatrix}-2\\ 1\\ 3\end{bmatrix}, \lambda \in \mathbb{R}

(iv)
Let n_3 be the normal of \pi_3
Length of projection = |\vec{AB} \times n_3|
= \frac{1}{\sqrt{26}} |\begin{bmatrix}4\\ -5\\ 3\end{bmatrix} \times \begin{bmatrix}5\\ -1\\ 0\end{bmatrix}| = 15\sqrt{\frac{3}{26}}

(v)
Required distance = \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \sqrt{3} units

(vi)
Let normal of \pi_4 = n_4 = \begin{bmatrix}-2\\ 1\\ 3\end{bmatrix} \times \begin{bmatrix}1\\ -1\\ 1\end{bmatrix} = \begin{bmatrix}4\\ 5\\ 1\end{bmatrix}
\pi_4: r \bullet \begin{bmatrix}4\\ 5\\ 1\end{bmatrix} = 4k+6
If \pi_1, \pi_2 \mathrm{~and~} \pi_4 intersect at l,n\begin{bmatrix}2.5\\ 1.5\\ 0\end{bmatrix} lies on pi_4
\Rightarrow \begin{bmatrix}2.5\\ 1.5\\ 0\end{bmatrix} \bullet \begin{bmatrix}4\\ 5\\ 1\end{bmatrix} = 4k+6
k = \frac{23}{8}

Comments
    pingbacks / trackbacks
    • […] Math Sat 130pm H2 Math Sat 330pm H2 Math Sun 930am H2 Math Sun 1130am H2 Math Sun 2pm H2 Math Mon 2pm H2 Math Mon 430pm H2 Math Mon 730pm H2 Math Tue […]

    Leave a Comment

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt
    0

    Start typing and press Enter to search