Trigonometry used in complex Numbers

Given z = \text{cos}\alpha + i \text{sin} \alpha and w = \text{cos}\beta + i \text{sin} \beta

z - w = \text{cos}\alpha + i \text{sin} \alpha -(\text{cos}\beta + i \text{sin} \beta)

z - w = \text{cos}\alpha -\text{cos}\beta + + i \text{sin} \alpha - i \text{sin} \beta)

z - w = - 2 \text{sin}(\frac{\alpha-\beta}{2})\text{sin}(\frac{\alpha+\beta}{2}) + i 2 \text{sin}(\frac{\alpha-\beta}{2})\text{cos}(\frac{\alpha+\beta}{2})

z - w = 2 i \text{sin}(\frac{\alpha-\beta}{2}) (\text{cos}(\frac{\alpha+\beta}{2}) + i \text{sin}(\frac{\alpha+\beta}{2}))

z - w = 2 i \text{sin}(\frac{\alpha-\beta}{2}) e^{\frac{\alpha + \beta}{2}}

Leave a Comment

Contact Us

CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

Not readable? Change text. captcha txt
0

Start typing and press Enter to search