2013 A-level H2 Mathematics (9740) Paper 1 Question 5 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.


Graph of 5i

Graph of 5i

Since x=asin\theta, we have dx=acos\theta ~d\theta
When x= \frac{\sqrt{3}a}{2}, \theta = \frac{\pi}{3}
When x= \frac{a}{2}, \theta = \frac{\pi}{6}

\int_{\pi / 6}^{\pi / 3} \sqrt{1-sin^{2}\theta}~(acos\theta) ~d\theta

= a \int_{\pi / 6}^{\pi / 3} cos^{2} \theta ~d \theta

= a \int_{\pi / 6}^{\pi / 3} \frac{1+cos2\theta}{2} ~d \theta

= \frac{a}{2}[\theta + \frac{sin 2 \theta}{2}]\biggl|_{\pi / 6}^{\pi / 3}

= \frac{a \pi}{12}

KS Comments:

The function is a periodic curve and some students do have problem reading such functions. They should be alert of the domain that they are required to draw too. Some students were unsure how the hint that f(x+3a)=f(x) should help. The parametric integration should be quite simple to handle as students just need to be cautious and introduce the double angle formula from MF15 effectively.

Showing 3 comments
    pingbacks / trackbacks

    Leave a Comment

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt

    Start typing and press Enter to search