2014 A-level H2 Mathematics (9740) Paper 1 Question 8 Suggested Solutions

All solutions here are SUGGESTED. Mr. Teng will hold no liability for any errors. Comments are entirely personal opinions.

(i)
\int \frac{1}{\sqrt{9-x^{2}}} dx
= sin^{-1}(\frac{x}{3})+C

(ii)
\frac{1}{\sqrt{9-x^{2}}}

= \frac{1}{\sqrt{9} \sqrt{1-\frac{x^{2}}{9}}}

= \frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}

= \frac{1}{3}[1-\frac{1}{2}(-\frac{x^{2}}{9})+\frac{-\frac{1}{2} (-\frac{3}{2})}{2!}(-\frac{x^{2}}{9})^{2}+\frac{-\frac{1}{2} (-\frac{3}{2})(-\frac{5}{2})}{3!}(-\frac{x^{2}}{9})^{3}+ \ldots

= \frac{1}{3}[1+\frac{x^{2}}{18}+\frac{3x^{4}}{648}+\frac{5x^{6}}{11664}+ \ldots]

= \frac{1}{3}+\frac{x^{2}}{54}+\frac{x^{4}}{648}+\frac{5x^{6}}{34992}+ \ldots

(iii)
Note that sin^{-1}(\frac{x}{3}) = \int \frac{1}{\sqrt{9-x^{2}}} dx
\int \frac{1}{\sqrt{9-x^{2}}} dx

\approx \int \frac{1}{3}+\frac{x^{2}}{54}+\frac{x^{4}}{648}+\frac{5x^{6}}{34992} dx

=\frac{x}{3}+\frac{x^{3}}{162}+\frac{x^{5}}{3240}+\frac{5x^{7}}{244944} +C

When x=0, C=0

Therefore, sin^{-1}(\frac{x}{3}) \approx \frac{x}{3}+\frac{x^{3}}{162}+\frac{x^{5}}{3240}+\frac{5x^{7}}{244944}

Personal Comments:
Some students still forgot to add the arbitrary constants. 🙁
Students should know how to utilise the MF15 formula to do the integration. The rest of the question is quite standard, though the calculations are ready tedious and hard here.

Comments
    pingbacks / trackbacks

    Leave a Comment

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt
    0

    Start typing and press Enter to search