June Revision Exercise 8 Q5

(i)
l_{AB}: r = \begin{pmatrix}4 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix}, \lambda \in \mathbb{R}

l_{AB}: r = \begin{pmatrix}7 \\ -3 \\ 13 \end{pmatrix} + \mu \begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix}, \mu \in \mathbb{R}

If they intersect, then \begin{pmatrix}7 \\ -3 \\ 13 \end{pmatrix} + \mu \begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix} = \begin{pmatrix}4 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} for some \lambda \text{ and } \mu

Solving with GC, we have \lambda = -1, \mu = 2. Thus, the lines intersect.

(ii)
\begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix} \times \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix}

Equation of plane: r \bullet \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix} = \begin{pmatrix}4 \\ 1 \\ 2 \end{pmatrix} \bullet \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix} = -19

(iii)
Required distance

= \frac{|\vec{AE}\bullet \begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix}|}{|\sqrt{9^2 + 7^2 + 5^2}|}

= \frac{3}{\sqrt{155}}

(iv)
Area of quadrilateral

= \text{ Area Triangle } ABC + \text{ Area Triangle } ACD

= \frac{1}{2}|\vec{CA} \times \vec{CD}| + \frac{1}{2}|\vec{AC} \times \vec{AB}|

= \frac{1}{2} |{\begin{pmatrix}-3 \\ 4 \\ -11 \end{pmatrix} \times \begin{pmatrix}-2 \\ 1 \\ -5 \end{pmatrix}}| + \frac{1}{2} |{\begin{pmatrix}3 \\ -4 \\ 1 \end{pmatrix} \times \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix}}|

=\frac{1}{2} |\begin{pmatrix}-9 \\ 7 \\ 5 \end{pmatrix}| + \frac{1}{2}|\begin{pmatrix}-18 \\ 14 \\ 10 \end{pmatrix}|

= \frac{1}{2}(\sqrt{81 + 49 + 25} + 2\sqrt{81 + 49 + 25})

=\frac{3}{2}\sqrt{155}

Back to June Revision Exercise 8.

Comments
    pingbacks / trackbacks

    Leave a Reply to June Revision Set 8 – The Culture Cancel reply

    Contact Us

    CONTACT US We would love to hear from you. Contact us, or simply hit our personal page for more contact information

    Not readable? Change text. captcha txt
    0

    Start typing and press Enter to search